Vektor posisi yaitu vektor yang posisi
(letaknya) tertentu. Misalnya merupakan vektor posisi dimana pangkalnya
di titik A dan ujungnya di titik B. Atau misalnya yaitu vektor posisi
yang awalnya di titik pusat dan ujungnya di titik A. Vektor posisi dan
seterusnya biasanya diwakili oleh vektor dengan huruf kecil misalnya dan sebagainya. Jadi ,
Contoh 2 : Jika titik A(1,2) dan B(5,9) maka tentukan AB!
Penyelesaian :
AB = (9 – 2 , 5 – 1) = ( 7, 4 )
2) VEKTOR NEGATIF (VEKTOR INVERS)
Vektor negatif (invers) dari vector sering ditulis yaitu vektor yang panjangnya sama tetapi arahnya berlawanan.
3) PERKALIAN VEKTOR DENGAN SKALAR
Jika k suatu bilangan real maka adalah suatu vektor yang panjangnya k kali lipat panjang . Jika k positif maka searah dengan dan jika k negatif maka berlawanan arah dengan .
4) PENJUMLAHAN VEKTOR
Penjumlahan 2 vektor dapat dilakukan dengan 2 cara, yaitu aturan segitiga dan dengan aturan jajargenjang.
Penjumlahan 2 vektor dengan aturan segitiga yaitu dengan mempertemukan ujung vektor yang satu dengan awal vektor yang lain , sehingga resultan (hasil penjumlahan vektor) kedua vektor adalah awal vektor yang satu ke ujung vektor yang lain .
Sedangkan penjumlahan dengan aturan jajargenjang yaitu dengan mempertemukan kedua awal vektor, kemudian membuat vektor kembarannya pada masing-masing ujung kedua vektor sehingga membentuk suatu bangun jajargenjang. Resultan kedua vektor adalah awal pertemuan kedua vektor tersebut ke ujung pertemuan kedua vektor tersebut.
Contoh 3 : Tentukan dari vektor-vektor di bawah ini !Sedangkan penjumlahan dengan aturan jajargenjang yaitu dengan mempertemukan kedua awal vektor, kemudian membuat vektor kembarannya pada masing-masing ujung kedua vektor sehingga membentuk suatu bangun jajargenjang. Resultan kedua vektor adalah awal pertemuan kedua vektor tersebut ke ujung pertemuan kedua vektor tersebut.
Penyelesaian :
A. Cara I (aturan segitiga) :
B. Cara II (aturan jajargenjang) :
Penjumlahan untuk 3 vektor atau lebih digunakan aturan poligon yang merupakan pengembangan dari aturan segitiga.
Contoh 4 : Tentukan dari vektor-vektor di bawah ini :5) SELISIH DUA VEKTOR
Selisih dua vector dan ditulis dapat dipandang sebagai penjumlahan dengan (vektor invers b. Jadi .
Contoh 5 : Tentukan a – b jika diketahui :
Tidak ada komentar:
Posting Komentar